
Increasing Assurance with

Literate Programming Techniques

Andrew P. Moore Charles N. Payne, Jr.�

Code 5542 Secure Computing Corporation

Naval Research Laboratory 2675 Long Lake Road

Washington, DC 20375 Roseville, MN 55113

moore@itd.nrl.navy.mil cpayne@sctc.com

Abstract

The assurance argument that a trusted system satis�es
its information security requirements must be convinc-
ing, because the argument supports the accreditation
decision to allow the computer to process classi�ed in-
formation in an operational environment. Assurance
is achieved through understanding, but some evidence
that supports the assurance argument can be di�cult
to understand. This paper describes a novel applica-
tion of a technique, called literate programming [11],
that signi�cantly improves the readability of the assur-
ance argument while maintaining its consistency with
formal speci�cations that are input to speci�cation and
veri�cation systems. We describe an application of this
technique to a simple example and discuss the lessons
learned from this e�ort.

1 Introduction

A convincing argument, called an assurance argument,
must be made that a trusted system is trustworthy.1

The assurance argument supports the accreditation de-
cision to allow a computer to process classi�ed infor-
mation in an operational environment. The argument
is composed from technical evidence that is produced
during the system development process, e.g., the secu-
rity model, design speci�cations, proofs, vulnerability
analysis and test results. As the trust in a system in-
creases, the demand for rigor in the system's assurance
argument also increases [5, 23]. However, increasing
the rigor of an argument does not necessarily make it
more convincing.

Assurance is achieved through understanding, speci�-
cally the understanding of parties independent of the
development e�ort, i.e., the certi�ers. Rigorously pro-
duced evidence that is di�cult to understand con-

�Work performed while author was employed by the Naval

Research Laboratory.
1A computer system is trusted if we rely on it for security

enforcement. It is trustworthy if that reliance is justi�ed tech-
nically. A computer may be trusted even though it is not trust-

worthy, because the accreditor may permit its use despite known
weaknesses.

tributes little to assurance [19]. Ricky Butler notes
that formal methods can help us demonstrate that
an implementation satis�es its speci�cation, but ul-
timately we must validate that the speci�cation de-
scribes what was intended [4]. The assurance argument
must help the certi�er understand why the speci�ca-
tion is accurate (validation) and why the implementa-
tion satis�es the speci�cation (veri�cation). The suc-
cess of an assurance argument, therefore, depends as
much on its presentation as on its production.

We have developed and demonstrated an assurance
argument documentation approach that improves the
readability of the assurance argument while maintain-
ing its consistency with formal speci�cations that are
input to speci�cation and veri�cation systems. Our
approach relies on a new application of old technology.
Over a decade ago, Donald Knuth introduced the con-
cept of literate programming (LP) for improving the
readability and comprehension of computer programs
[11]. He believes that programs should be written to be
read by humans instead of computers. Since then, oth-
ers have extended the application of LP techniques to
program design languages [3], formal speci�cation lan-
guages [32], and formal proofs [30]. We propose here
that LP techniques can be used to document the entire
assurance argument.

This paper describes our approach for documenting a
formal assurance argument using LP techniques. In
the next section, we discuss some problems that may
be encountered when documenting a formal assurance
argument. Then, we review the LP paradigm in the
context of available tools and describe how we used LP
techniques to document an assurance argument for a
small example. We conclude with some lessons learned
from that e�ort and an overview of the primary bene�t
that accrues from using our approach. An appendix
to the paper presents an excerpt from the assurance
argument for the example described.

2 Understanding the Problem

A few years ago we constructed a formal assurance ar-
gument for a highly trusted network security device
[25]. Our chain of reasoning spanned from the critical

requirements model to source code that was veri�ed to
conform to the model. The argument was constructed
using a speci�cation language for composite (concur-
rent) systems, a speci�cation language and veri�cation
system for the re�nement of sequential components,
and a sequential programming language. Assurance ev-
idence produced included machine-generated and man-
ual proofs, a hand-translation from the composite sys-
tem speci�cation to the sequential component speci�-
cation, a hand-translation from the sequential compo-
nent speci�cation to the programming language, and
rigorous functional testing. In addition, we modeled
graphically the functional behavior of the device. We
presented each piece of evidence to the certi�er, and
we described verbally the connections between them.

Unfortunately, the rigor of the assurance argument for
the network security device did not signi�cantly im-
prove the certi�er's con�dence that the critical require-
ments model was accurate nor that the system, as im-
plemented, conformed to the model. Much of the ar-
gument's power to persuade was lost for the following
reasons:

� The framework for the assurance argument was
not documented adequately.

An accurate understanding of the argument re-
quires that the framework specify underlying as-
sumptions, motivations and strategies within the
context of the system's speci�cation. Signi�cant
results of the argument need to be highlighted, and
meaningful threads between di�erent pieces of ev-
idence need to be traced. The framework must
clearly specify how each piece of evidence con-
tributes to the overall argument. This is particu-
larly important in the development of non-trivial
systems that rely on several formal methods, each
of which makes certain (possibly contradictory)
assumptions about the system being speci�ed. A
good framework ensures the cohesion of the argu-
ment.

� The speci�cations and proofs were documented in
a manner to facilitate acceptance by mechanical
tools rather than to promote understanding by hu-
mans.

Since the mechanical tools lack many of the
reasoning and inference capabilities of a human
reader, more information was needed to facilitate
veri�cation, e.g., proof heuristics. This extra in-
formation can be a substantial obstacle to com-
prehension. In addition, computer language com-
pilers often restrict the ordering of the individual
parts of the speci�cation, e.g., requiring that sub-
routines be de�ned before they are called. Unfor-
tunately, the order required by the compiler may
not be the most intuitive for the human reviewer.
Methods are needed to help manage speci�cation
detail by guiding the reader through the speci�ca-
tion, pointing out areas of particular interest and
hiding obvious or extraneous detail.

� Little assurance was provided that the documen-
tation accurately represents the system as imple-
mented.

The assurance argument for the network secu-
rity device was partitioned into system require-
ments, module interfaces and module implementa-
tion documentation. Documents were kept consis-
tent with the formal speci�cation and code man-
ually; any change to the speci�cation or code re-
quired a change to the documentation. This ap-
proach is both labor-intensive and error-prone and
does not promote con�dence in the running sys-
tem. Any certi�cation of a system must be based
on documentation that incontrovertibly describes
the system executables.

The problems with certifying the network security de-
vice suggested the need for tools and techniques to im-
prove the presentation of an assurance argument with-
out sacri�cing its rigor.

3 Literate Programming (LP)

To demonstrate the literate programming concepts,
Knuth developed a toolset called WEB to support writ-
ing Pascal programs in the literate style. A WEB literate
program is a text �le that contains both computer code
and descriptive narrative. The structure of the �le is
determined by the author instead of the compiler. The
code can be broken into small, understandable chunks
(which we call macros) and documented in any order.
WEB tools process text �les in two independent phases.
In the tangle phase, the computer code is extracted and
re-ordered for the programming language compiler. In
the weave phase, the macros are cross-referenced, pro-
gram variables are indexed and typesetting commands
are added to the code and to the descriptive narrative.
Figure 1 illustrates that the results of these phases, af-
ter processing by a compiler and a typesetter, are exe-
cutable code and typeset documentation, respectively.
The �gure also illustrates a unique characteristic of the
LP approach: because there is only one source �le, the
code that is documented is always consistent with the
code that is executed. From a certi�er's perspective,
this is valuable assurance evidence.

The literate program development lifecycle (see Fig-
ure 2) is not that di�erent from the conventional pro-
gram development lifecycle. With conventional pro-
gram development, if there are errors in the compile or
run phase, the developer returns to the edit phase and
modi�es the source code. Literate program develop-
ment introduces the tangle phase. The output of the
edit phase is a literate program rather than compiler-
ready source code. If an error occurs in the compile
or run phases, the developer must modify the literate
program (instead of the source code). Knuth discour-
aged the programmer from editing the source code by
making the output of the tangle phase almost unread-
able.

Very simple cross-referencing information is added to

LP
Tool

Compiler
Ready
C o d e

Language
Compiler

Executable
Program

Xref.
C o d e
and
Doc.

Typesetter

Typeset
C o d e
a n d
Doc.

C o d e
a n d
Doc.

weave

tangle

Figure 1: The WEB process

Edit Compile Run
source
code

errors?

errors?errors?

errors?

Edit Compile Run
literate

program T a n g l e
source
code

errors?

Figure 2: Conventional program development (top) and literate program development (bottom)

macros during the weave phase. An example is illus-
trated in Figure 3, where two macros, \Program to
print the �rst thousand prime numbers" and \Print
the �rst m prime numbers", are de�ned [12].2 Each
macro is assigned a unique number (in this case, 2 and
3) during the weave phase. The macro body consists
of code and references to other macros. For example,
macro 2 includes a reference to macro 3. During the
tangle phase, these references are expanded beginning
with the \root macro" (not pictured) until all code is
revealed. Macros need not be de�ned in the order that
they are referenced. The example illustrated in Fig-
ure 3 could be re�ned to discuss how to print table p
before discussing how to �ll table p with prime values.

This program was developed by Knuth to demonstrate the benefits of
literate programming for ordinary Pascal programs. Here is the high-level
structure of a simple Pascal program to print the first thousand prime
numbers. The internal details will be presented incrementally.

ÆProgram to print the first thousand prime numbersæ[2] ”
p r o g r a m p r i n t _ p r i m e s (o u t p u t) ;
c o n s t m = 1 0 0 0 ; ÆOther constants of the programæ[5]

v a r Ævariables of the programæ[4]

b e g i n ÆPrint the first m prime numbersæ[3]

e n d .

This macro is invoked in definition 1.

Let us turn our attention to the main algorithm for printing these numbers.
For this example, we will construct a table and fill it with all of the
numbers. Then we will print the table.

ÆPrint the first m prime numbersæ[3] ”

ÆFill table p with the first m prime numbersæ[11];

Æ Print table pæ[8]

This macro is invoked in definition 2.

[The example continues ...]

Figure 3: Sample LP macros

Knuth notes several bene�ts of LP [14]:

� There is no need to choose between top-down and
bottom-up programming, because a program is
treated as a web instead of a tree. A hierarchi-
cal structure is present, but the most important
characteristic of the program is its structural re-
lationships. A complex piece of software consists
of simple parts and simple relationships between
these parts. The programmer's task is to state

2Note that the numbers in square brackets in the �gure
are not bibliographic references, but macro de�nition numbers.
These numbers appear only after macro de�nitions or references,
i.e., the angle bracket delimited items, and so should not cause

confusion with numbers in square brackets that denote biblio-
graphic entries elsewhere in the document.

those parts and their relationships in whatever or-
der is best for the reader.

� Each part of a program can have its appropriate
stature without distorting the readability of other
parts.

� A literate program takes less time to debug be-
cause the programmer is encouraged to clarify his
thoughts as he programs.

The popularity of WEB for Pascal motivated the devel-
opment of LP tools for other languages, e.g., C [18]
Smalltalk [27], and Modula-2 [29]. However, it soon
became apparent that it would be impractical to build
a separate tool for every programming language in use.
In addition, users demanded tools that could process
more than one language simultaneously. This moti-
vated the development of language-independent tools
such as nuweb [2], noweb [26] and FunnelWeb [31]. Not
only can these tools handle multiple languages, but
they are not limited to computer programming lan-
guages. For this exibility, language-independent tools
sacri�ce features such as code prettyprinting and au-
tomatic indexing of program variables.

4 A Simple Application of LP

We chose to investigate the use of LP techniques to im-
prove the presentation of rigorous assurance arguments
on a relatively simple problem, an RS-232 character
repeater [17]. Choosing a simple problem allows us to
observe the inuence that LP has on our speci�cation
and veri�cation styles without getting bogged down by
the details of the problem. This section describes the
character repeater problem and how we documented it.
The repeater assurance argument [22] presents further
details about the problem and our solution.

The character repeater, illustrated in Figure 4, relays
only even parity characters until it overows. More
speci�cally, the repeater has an input port, an output
port, and an error port that can operate at a range
of speeds. Characters of even parity received over the
input port are stored in an internal bu�er prior to their
transmission over the output port. Characters of odd
parity cause an error to be signaled over the error port
and are discarded. If the internal bu�er overows, an
error is signaled to the error port, all characters in the
bu�er are transmitted, and the repeater halts.

The repeater must satisfy the following critical require-
ments:

� Exactly those characters of even parity received by
the repeater prior to the reception of the character
causing an overow are transmitted.

� Only received characters are transmitted.

� Characters are transmitted in the order in which
they were received.

input
port

- repeater

?

error port

-

output
port

Figure 4: The RS-232 character repeater

The development and documentation of the repeater
assurance argument involved the use of a number of
languages and tools. The CSP language [10] is the com-
putational framework for the repeater speci�cation and
veri�cation. The EVES Veri�cation System [6, 15] and
the FDR model checker [7, 28] provide mechanical as-
sistance for constructing and verifying the CSP speci�-
cations. EVES is a general purpose interactive veri�ca-
tion system that can be used to prove mathematically
that CSP descriptions conform to trace speci�cations
[21, 24]. FDR is a CSP model checker that automati-
cally veri�es (through an exhaustive state space anal-
ysis) that a CSP process implementation properly re-
�nes a CSP process speci�cation. Finally, FunnelWeb
[31] is the LP tool that is used to facilitate the doc-
umentation of the repeater assurance argument. Fun-
nelWeb allows documenting both the EVES and FDR
speci�cations simultaneously by allowing one to tangle
multiple output �les.

Figure 5 illustrates the structure of the assurance ar-
gument for the repeater CSP process implementation.
Slanted arrows indicate a re�nement of a speci�ca-
tion to a more detailed speci�cation or implementa-
tion; vertical arrows indicate a translation of a spec-
i�cation from one semantic domain to a comparable
semantic domain. Dashed arrows indicate a re�ne-
ment/translation that is informal ; solid arrows indi-
cate a re�nement that uses a combination of informal
and formal techniques. The increase in width of the ar-
gument from top to bottom illustrates additional detail
that is speci�ed at the lower levels. The translation in
the middle of the �gure is necessary because FDR lacks
the power to analyze the top-level critical requirements
directly. We used EVES to re�ne the top-level critical
requirements to a semantic level that FDR can handle;
then we translated the speci�cation into FDR's syntax.

The repeater assurance argument was successfully
completed. It is documented as a single coherent entity,
from the top-level problem description to the detailed
physical design[22]. It describes in detail not only the
major components of the assurance argument shown in
Figure 5, but also the transition between these compo-
nents. Figure 6 illustrates how FunnelWeb was used
to document the argument. FunnelWeb allows tan-
gling both EVES speci�cation �les (those ending with
\sv") and FDR speci�cation �les (those ending with

Critical
Requirements

Logical
Architecture

Translation

Translated
Logical Design

Detailed
Physical Design

Physical
Architecture

CSP, EVES

FDR

Problem
Description

}
Detailed

Logical Design

}
K e y

informal refinement combined informal/
formal refinement

informal translation

Figure 5: Repeater Assurance Argument

\fdr"). The �nal results of the FDR and EVES anal-
ysis and processing are documented in the assurance
argument. The argument is woven into a source �le
(that ending with \tex") for processing using LaTEX
[16], a macro language for TEX [13] that has powerful
cross-referencing capabilities. For simplicity, the �gure
does not represent the interactive and iterative nature
of the process of developing the assurance argument.
An excerpt from the argument, shown in the appendix,
formalizes the repeater's critical requirements. This
excerpt illustrates the general ow of the LP presenta-
tion of the argument, even if the reader is unfamiliar
with the EVES and CSP languages used.

The repeater problem has several qualities that made
it a good choice for our investigation: it is simple, self-
contained and well-understood. This allowed us to con-
centrate on the use of LP techniques to develop and ex-
plicate its assurance argument with minimal overhead
in actually implementing the repeater itself. Unfor-
tunately, it makes it more di�cult to argue that the
techniques scale-up to larger, more complex applica-
tion. Nevertheless, the re�nement of the repeater ad-
dresses many important issues that commonly arise in
the development of more complex hardware/software
systems:

� Stating Requirements Intuitively: The re-
peater's critical requirements are formalized as re-
strictions on the input/output behavior (traces) of
the repeater viewed as a black-box. This abstrac-
tion permits a more intuitive formulation of the

F u n n e l W e b
*.fw

E V E S

L a T e X
*. tex

* . sv Ver i f i ca t ion
R e s u l t s

Assurance
Argument

tangled
output

woven
output

- specifications
- documentation
- LaTeX commands

- reordered and separated specifications

- cross-referenced specifications
- documentation
- LaTeX commands

F D R
*.fdr M o d e l

C h e c k i n g
R e s u l t s{ +

- typeset specifications,
 documentation, and
 analytical results

- typeset specifications
 and documentation

Figure 6: Documenting the repeater assurance argument

repeater's actual requirements than that allowed
by many veri�cation systems, especially symbolic
model checkers.

� Dealing Explicitly with Concurrency: The
repeater is speci�ed as a composition of commu-
nicating, sequential processes executing concur-
rently. A method described in [20] was used to
derive requirements for the sequential processes
su�cient to guarantee that the composite process
satis�es its speci�cation. Dealing with concur-
rency explicitly allowed us to uncover potential
problems with the implementation (e.g., synchro-
nization problems) that models based on a single
sequential state machine might gloss over.

� Specifying Both the Logical and Physical

Design: The decomposition of the repeater into
communicating sequential processes was �rst spec-
i�ed and veri�ed as a logical design (in EVES)
and then translated to a physical design (in FDR).
The logical design describes a simple abstraction
of the repeater (as two processes executing in par-
allel) that is shown to enforce trace speci�cations
of its critical requirements using EVES. The physi-
cal design implements the abstract speci�cation as
three processes executing concurrently; it is shown

to conform to the logical design using FDR.3 Be-
ing able to specify multiple levels of abstraction
in the design process is critical to managing the
veri�cation of complex systems.

By explicitly addressing these three issues we demon-
strate the potential scalability of our approach.

The resulting assurance argument is 130 pages, divided
into four parts containing thirteen chapters, with three
appendices, an index and a bibliography. The four
parts are the repeater's problem statement, the logical
design, the physical design, and supporting de�nitions.
Each part contains one or more chapters. For exam-
ple, Part IV contains several chapters consisting of se-
lected de�nitions from the underlying theories of the
speci�cation. The only de�nitions presented are those
considered necessary to understand the speci�cation.
The theories from which the de�nitions are extracted
are de�ned in separate documents that accompany the
argument.

The length and complexity of the argument is primarily
due to our goal of addressing issues that would have to
be dealt with in larger-scale applications, as described
above. Nevertheless, the length of the assurance ev-

3A collaborative e�ort with George Mason University [1]

yielded a veri�ed gate-level implementation of the physical
design.

idence can be intimidating. The EVES speci�cation
and its supporting theories span ninety pages not in-
cluding the narrative description. Fortunately, only a
small fraction of this information needs to be under-
stood to comprehend the assurance argument, and LP
tools permit extracting just those elements.

5 Lessons Learned

Our trial application of LP techniques to the RS-232
repeater assurance argument suggests several lessons
to keep in mind when applying the approach in the
future:

Adopt tutorial application of LP to ease certi�cation.

Documentation that successfully supports system de-
velopment and maintenance must allow users to lo-
cate e�ciently the elements of the system speci�cation
that they need. Documentation that successfully sup-
ports certi�cation must convince readers that the sys-
tem satis�es its critical requirements. Unfortunately,
conventional approaches to documenting systems often
requires one to sacri�ce ease of understanding for ease
of reference.

However, when applied to system speci�cations, LP
tools and techniques permit the user to construct two
views of the speci�cation - one produced as a result of
the weave phase and one as a result of the tangle phase.
The literate program produced as a result of the weave
phase should be written as a tutorial explication of
the assurance argument to facilitate certi�cation. Di-
vide and conquer strategies for presenting the speci-
�cation should promote reader comprehension. The
speci�cation produced as a result of the tangle phase
should be written as a referential guide to the speci�ca-
tion. Of course, the tangled output needs to be struc-
tured as required for processing by automated tools,
but these constraints usually leave room for organizing
the speci�cation to improve accessibility. For example,
the EVES theories that support the repeater assurance
argument are modularized and indexed for ease of ref-
erence.

Do not use LP tools too early in the development.

The early stages of writing speci�cations for ease of
understanding and veri�cation involve a discovery pe-
riod as the author experiments with di�erent abstrac-
tions, e.g., speci�cation models and data structures,
in the search for the optimal solution. We discov-
ered that the use of LP tools during this period in-
terferes with the discovery process. More speci�-
cally, the slightly extended development process in-
troduced by the tangle phase obstructs the trial and
error nature of discovery. The general approach we
adopted was to use the speci�cation and veri�cation
tools without LP until the speci�cation begins to sta-
blize. As the author becomes comfortable with the
speci�cation, documenting the solution in terms that
are intuitive to a reader may proceed using LP tools.

Simpli�ed document maintenance justi�es increased
turnaround time.

The document describing the assurance argument nec-
essarily involves many elements of the system speci�-
cation. Maintaining the consistency of the argument
with the actual system speci�cation (as input to the
speci�cation and veri�cation tools) is critical to the
certi�cation. Unfortunately, the natural evolution of
the speci�cation during both development and main-
tenance phases makes maintaining this consistency dif-
�cult even if the developer waits until the speci�cation
stablizes before beginning to document the argument.
The common approach of maintaining this consistency
manually is both time consuming and error-prone. LP
techniques maintain consistency as a matter of course
since both the argument and the speci�cation are gen-
erated from a single source �le. The price for this
is an extended development process, which increases
the time it takes to process changes to the speci�ca-
tion. Nevertheless, the bene�ts of the LP approach in
terms of simpli�ed document maintenance signi�cantly
outweighs the disadvantages associated with increased
turnaround time.

LP techniques support integrating formal and informal
arguments.

A larger percentage of the repeater's assurance argu-
ment than expected was not amenable to formaliza-
tion. Most of the argument's informality was due to
assumptions that the CSP computational paradigm
makes about the environment and implementation of
CSP processes. These assumptions imply new critical
requirements for the repeater that cannot be stated
formally in the CSP model and must be veri�ed in-
formally. Tracing both formally and informally stated
critical requirements through the levels of speci�cation
re�nement is crucial to the cohesion of the assurance
argument. The LP techniques and tools provided crit-
ical support for interleaving the informal and formal
traces of requirements. We believe that the degree of
informality of the repeater's argument was not pecu-
liar to the repeater problem, but typical of nontrivial
systems in general.

Document only high-level structure of machine-
generated proofs.

Documenting a rigorous assurance argument requires
deciding how best to present machine-generated proofs.
Even sophisticated provers like EVES do not generate
journal-level proofs. If cost were no issue, the ideal
approach would be to provide intuitive descriptions of
both the formal and informal parts of the assurance ar-
guments. For the repeater argument, we chose a middle
road: we provide an intuitive description of the infor-
mal parts and carefully outline the boundary of the
formal parts.

The boundary of the formal parts of the repeater as-
surance argument was documented by describing only
the high-level structure of the formal proofs, omitting
the details about why the proofs hold. This approach
permits covering all aspects of the argument once in

detail and permits assessing the completeness of the
argument. Unfortunately, it assumes the proof tools
are sound, i.e., they cannot generate a proof of a false
conjecture. Although proof tools are relatively reli-
able, tools that would help certi�ers review the proofs
produced by proof assistants would reduce the chances
of basing an assurance argument on a false machine-
generated proof.

Do not use LP tools as typesetters.

Many of the LP tools, including FunnelWeb, follow
Knuth's original philosophy of providing enough LP-
speci�c document formatting commands to produce
nice documentation. The goal is to make knowledge of
the underlying typesetter unnecessary to use LP tools.
As the re�nement of the repeater's assurance argument
progressed, however, it became clear that the Funnel-
Web formatting commands were insu�cient by them-
selves to produce the documentation desired. Rather
than mixing LaTEX and FunnelWeb formatting com-
mands, we restructured the document using Funnel-
Web's commands only for de�ning macros. All other
document formatting was speci�ed in LaTEX. This ap-
proach simpli�ed the document construction process
considerably.

Constructing assurance arguments requires increased
support for referencing macros.

An assurance argument involves describing the rela-
tionships between entities of the speci�cation and im-
plementation in a more complicated way than that re-
quired for traditional literate programming. In partic-
ular, we found that FunnelWeb, when applied to as-
surance argument development, does not adequately
support referencing macros. We often wanted to ref-
erence a macro de�nition by its name and de�nition
number or to expand it \in-line" in the narrative (i.e.,
the non-code portion of the document). Because these
references occur outside of a macro de�nition, Funnel-
Web simply ignores them during the tangle and weave
phases. Other members of the WEB family of tools may
support such referencing and should be reviewed for
future applications of LP to construct assurance argu-
ments.

Methods are needed to integrate tools with LP.

While LP tools provide a useful function, they cannot,
nor should they be expected to, provide all of the func-
tions needed to document high assurance systems. For
example, tools are needed to help trace both formally
and informally speci�ed requirements through the lev-
els of re�nement and for analyzing these traces for con-
sistency and completeness. Other tools such as pret-
typrinters, proof review tools, graphical speci�cation
and simulation tools, and WYSIWYG editors could
signi�cantly facilitate the documentation and certi�-
cation e�orts. Methods are needed to organize and
integrate such tools to best support the development
of high assurance systems.

6 Conclusions

Our experience demonstrates the potential bene�t of
using LP tools and techniques in the development of
understandable assurance arguments. In fact, the ben-
e�t of using LP to develop assurance arguments for
trusted systems that require independent certi�cation
exceeds the bene�t of using LP for traditional program-
ming. The inevitable use of many di�erent methods,
both formal and informal, in the development of the as-
surance argument requires their application to be doc-
umented in a common framework to ensure coherence
and readability. LP tools allow this framework to be
constructed while maintaining its consistency with for-
mal speci�cations that are input to speci�cation and
veri�cation systems. This approach is more e�ort than
documenting only the individual speci�cations, but it
yields a more cohesive assurance argument and pro-
vides certi�ers assurance that the running system con-
forms to its documentation.

The simple application of LP described in this paper
is only a single case study, but the approach appears
promising. We believe that its use would have pre-
vented many of the problems that we encountered in
the certi�cation of the network security device [25].
Currently, we are using LP techniques in a larger scale,
multi-member team development of a secure functional
extension of the Navy's Joint Maritime Command In-
formation System (JMCIS) [8]. We have de�ned the
overall functional requirements and operation formally
in the langauges of Statemate [9]. The Statemate spec-
i�cation provides a formal structure for the overall sys-
tem assurance strategy and argument, which is being
documented in hypertext (HTML). The re�nement of
this assurance argument for a security-critical compo-
nent of the extended JMCIS architecture using EVES
and FunnelWeb is underway.

The user community for LP tools is still very small,
even after a decade of use. LP tools have not been
commercialized (most are available free over the in-
ternet) and, thus, support is haphazard, at best. We
hope that the bene�t that accrues with the new appli-
cation of LP described in this paper will revitalize the
user community and stimulate commercial investment
in the technology.

References

[1] Richard J. Auletta. Rapid-prototyping of high as-
surance systems. Technical report, George Mason
University, Fairfax, Virginia, January 1993.

[2] Preston Briggs. Nuweb, A simple literate pro-
gramming tool. Technical report, Rice University,
Houston, TX, 1993.

[3] Marcus E. Brown and David Cordes. A literate
programming design language. In Proc. Comp.
Euro 90, IEEE International Conference, pages
548{549, Los Alamitos, CA, 1990. IEEE CS Press.

[4] Ricky W. Butler and George B. Finelli. The in-
feasibility of experimental quanti�cation of life{
critical software reliability. In Proceedings of the
ACM SIGSOFT Conference on Software for Crit-
ical Systems, New Orleans, LA, December 1991.
Also in Software Engineering Notes, Vol. 16, No.
5, December, 1991.

[5] Commission of the European Communities, Lux-
embourg. Information Technology Security Eval-
uation Criteria (ITSEC), June 1991.

[6] Dan Craigen, Sentot Kromodimoeljo, Irwin
Meisels, Bill Pase, and Mark Saaltink. Reference
manual for the language Verdi. Technical Report
TR-91-5429-09a, ORA Canada, Ottawa, Ontario,
September 1991.

[7] Formal Systems (Europe) Ltd. Failures Diver-
gence Re�nement: User Manual and Tutorial,
January 1994.

[8] Judith N. Froscher, David M. Goldschlag, My-
ong H. Kang, Carl E. Landwehr, Andrew P.
Moore, Ira S. Moskowitz, and Charles N. Payne.
Improving inter-enclare information ow for a se-
cure strike planning application. In Proc. 11th An-
nual Computer Security Applications Conference,
New Orleans, LA, December 1995. IEEE Com-
puter Society Press.

[9] David Harel, Hagi Lachover, Amnon Naamad,
Amir Pnueli, Michal Politi, Rivi Sherman, Aharon
Shtull-Trauring, and Mark Trakhtenbrot. State-
mate: A working environment for the develop-
ment of complex reactive systems. IEEE Trans-
actions on Software Engineering, 16(4):403{414,
April 1990.

[10] C. A. R. Hoare and J. C. Shepherdson, editors.
Mathematical Logic and Programming Languages.
Prentice-Hall, 1985.

[11] Donald E. Knuth. Literate programming. The
Computer Journal, 27(2):97{111, May 1984.

[12] Donald E. Knuth. Literate programming. The
Computer Journal, 27(2), May 1984.

[13] Donald E. Knuth. TEX: The Program, volume B of
Computers & Typesetting. Addison-Wesley, Read-
ing, MA, USA, 1986.

[14] Donald E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Stanford University
Center for the Study of Language and Informa-
tion, Stanford, CA, USA, 1992.

[15] Sentot Kromodimoeljo, Bill Pase, Mark Saaltink,
Dan Craigen, and Irwin Meisels. EVES: An
overview. Technical report, ORA Canada, Ot-
tawa, Ontario, February 1993.

[16] Leslie Lamport. A Document Preparation Sys-
tem LaTEX: User's Guide and Reference Manual.
Addison-Wesley Publishing Company, 1986.

[17] Carl E. Landwehr. The RS-232 software repeater
problem. Cipher Newsletter of the Technical Com-
mittee on Security and Privacy, Summer 1989.

[18] Silvio Levy. Literate programming and cweb.
Computer Language, 10(1):67{68, 70, January
1993.

[19] David Mihelcic, Andrew Moore, and Charles
Payne, Jr. If a tree falls in the woods ... In Chuck
Howell, editor, Notes from the MITRE Workshop
on Assurance for Critical Software. MITRE Cor-
poration, September 10 and 11 1992.

[20] Andrew P. Moore. The speci�cation and veri-
�ed decomposition of system requirements using
CSP. IEEE Transactions on Software Engineer-
ing, 16(9):932{948, September 1990.

[21] Andrew P. Moore. The EVES CSP library. NRL
Technical Memorandum 5540-153:apm, Naval Re-
search Laboratory, Washington, D.C., August
1994.

[22] Andrew P. Moore and Charles N. Payne, Jr. The
RS-232 character repeater re�nement and assur-
ance argument. NRL Technical Memorandum
5540-034:amcp, Naval Research Laboratory, 1994.

[23] National Computer Security Center, Ft. Meade,
MD. DoD 5200.28-STD, Trusted Computer Sys-
tem Evaluation Criteria, December 1985.

[24] Bill Pase and Sentot Kromodimoeljo. A user's
guide to a skeletal CSP theory in EVES. Techni-
cal Report TR-92-5469-03,ORA Canada, Ottawa,
Ontario, July 1992.

[25] Charles N. Payne, Jr., Andrew P. Moore, and
David M. Mihelcic. An experience modeling
critical requirements. In Proc. COMPASS 94,
Gaithersburg, MD, June 1994. IEEE.

[26] Norman Ramsey. Weaving a language indepen-
dent web. Communications of the Association for
Computing Machinery, 32(9):1051{1055, Septem-
ber 1989.

[27] Trygve Reenskaug and Anne Lise Skaar. An en-
vironment for literate smalltalk programming. In
OOPSLA'89 Proceedings, pages 337{345, 1989.

[28] A. W. Roscoe. Model-checking CSP. In A Clas-
sical Mind, Essays in Honour of CAR Hoare.
Prentice-Hall International, 1994.

[29] E. Wayne Sewell. How to MANGLE your soft-
ware: the WEB system for Modula-2. TUGboat,
8(2):118{122, July 1987.

[30] Martin Simons, Maya Biersack, and Robert
Raschke. Literate and structured presentation
of formal proofs. In E.R. Olderog, editor, IFIP
Working Conference on Programming Concepts,
Methods and Calculi. North Holland, 1994.

[31] Ross Williams. FunnelWeb user's manual. Tech-
nical report, University of Adelaide, Adelaide,
South Australia, Australia, May 1992. Avail-
able via anonymous ftp to ftp.adelaide.edu.au in
/pub/funnelweb.

[32] Wai Wong. Mweb: Proof script management
utilities. ftp.cl.cam.ac.uk:/contrib/mweb/manual,
University of Cambridge, Computer Laboratory,
Cambridge, CB23QG, England, 1994.

A Excerpt from Assurance Argument

This chapter speci�es the critical requirements for a
CSP process called Rptr that represents the repeater.4

.

.

.

Speci�cation of the Formal Assertions

The CSP process Rptr has three parameters, which are
constant for any particular instantiation of Rptr:

� chsz represents the length in bits of a character
processed. All characters processed by Rptr are
delimited by a startbit/stopbit combination.

� buffsz represents the capacity in characters of the
internal bu�er.

� tick represents the event representing successful
termination. We use the variable tick, by con-
vention, to represent a special event that occurs
automaticallywhen (and only when) a process ter-
minates successfully. Rptr terminates successfully
after it halts due to receiving a character that
causes an overow; otherwise, Rptr continues to
process characters that it receives.

hDe�nition Stub of Rptri[1] �
function Rptr(chsz,buffsz,tick);

This macro is invoked in de�nition 219.

.

.

.

4Although a thorough understanding of this example requires
familiarity with CSP and EVES, the reader should be able to
get a feel for the ow of an assurance argument using LP. See

[22] for the complete repeater assurance argument, including an
overview of the languages of CSP and EVES.

Top-Level Requirements Structure

Our goal is to specify formally as trace speci�ca-
tions the critical requirements for Rptr.5 Assuming
valid relay is the name for these requirements, our
speci�cation is as follows:6

hRptr satis�es valid relayi[7]M �

axiom Rep_sat_spec(chsz,buffsz,tick) =

begin

chsz >= 0

and buffsz >= 0

and not iscomm tick

-> Rptr(chsz,buffsz,tick)

sat valid_relay(hRptr alphabeti[27],
chsz,buffsz,tick)

end Rep_sat_spec;

This macro is invoked in de�nitions 219 and 221.

A trace speci�cation like valid relay is simply a
set of traces. Elements of the set are chosen from the
universe of possible traces of events and must conform
to valid_relay_spec:7

hvalid relayi[8]M �

zf function valid_relay(a,chsz,buffsz,tick) =

begin

{ tr1 in a^*

| valid_relay_spec(tr1,chsz,buffsz,tick) }

end valid_relay;

This macro is invoked in de�nitions 219 and 221.

We split valid relay spec into two pieces: one
when Rptr has successfully terminated (i.e., tick is
the last event of Rptr's trace) and one when it has
not. Traces of Rptr that end with tick must sat-
isfy Rptr's post condition; traces of Rptr that do not
end with tick must satisfy Rptr's invariant. This
forms a natural partition of valid relay since we
can say more about the requirements of Rptr when
it has terminated. At termination we can say that
all even parity characters received by Rptr before the
bu�er overows have been successfully transmitted.
Before termination, all we can say is that some pre-
�x of those characters have been transmitted. Hence-
forth, the phrase valid characters refers only to those
characters of even parity received before an overow.8

5The repeater's critical requirements were described infor-

mally in Section 4.
6The predicate iscomm holds if its argument is a CSP com-

munication event. P sat S holds if process P satis�es trace spec-
i�cation S. Viewing process P as the set of traces in which P may
engage and S as the set of acceptable traces, the sat predicate
is equivalent to the subset predicate, i.e., process P may engage
only in traces allowed by S.

7The parameter a represents the alphabet of all possible re-
peater events; a^* represents all possible traces formed from
these events.

8outbit is the name of the repeater's output port; inbit is
the name of the input port.

hConstraints on Rptr's tracei[9]M �

function valid_relay_spec(tr1,chsz,buffsz,tick) =

begin

if hRptr terminatesi[10]
then hAll valid characters were transmitted over out-

biti[11]
else hA subsequence of valid characters were transmit-

ted over outbiti[22]
end if

end valid_relay_spec;

This macro is invoked in de�nitions 219 and 221.

hRptr terminatesi[10]�
not null tr1

and last(tr1) = tick

This macro is invoked in de�nition 9.

Repeater Post Condition

Under the assumption that Rptr has terminated,
the three critical requirements 9 taken together require
that up to the point at which an overow occurs, the
output stream of characters must be identical to the
input stream of characters with characters of odd par-
ity removed. Also, nothing other than identi�able and
complete characters may be transmitted over outbit.

hAll valid characters were transmitted over outbiti[11] �

hCharacter sequence transmitted over outbiti[12]
= hValid character sequence received over inbiti[13]

and hOnly whole characters were transmitted over out-

biti[21]

This macro is invoked in de�nition 9.

Character sequence transmitted over outbit

The sequence of bits traversing outbit, i.e., tr1 |=
outbit, is a at representation of the characters pro-
cessed by Rptr. The following formats this bit sequence
into the character sequence it represents:

hCharacter sequence transmitted over outbiti[12]M �

hBits to charsi[122](`tr1 |= outbit')

This macro is invoked in de�nitions 11 and 22.

Valid character sequence received over inbit

valid input chars returns the sequence of even par-
ity characters received over inbit in trace tr1 be-
fore an overow occurs. This sequence is calcu-
lated by restricting the bits received before an over-
ow occurs to those characters of even parity.10

9See Section 4 of this paper for the informal statement of
these requirements.

10The operator |^ represents the restriction operator, i.e., t
|^ A returns trace t with elements not in set A removed.

hValid character sequence received over inbiti[13]M �

valid_input_chars(tr1,chsz,buffsz,tick)

This macro is invoked in de�nitions 11 and 22.

hDe�nition of valid input charsi[14]M �

function valid_input_chars(tr1,chsz,buffsz,tick) =

begin

hCharacters received over inbit before overowi[15]
|^ hSet of even parity charactersi[133]
end valid_input_chars;

This macro is invoked in de�nitions 219 and 221.

The sequence of characters received over inbit
before an overow are derived by transforming to char-
acters the sequence of bits received over inbit before
an overow.

hCharacters received over inbit before overowi[15] �

hBits to charsi[122] (`hTrace before overowi[16] |=
inbit')

This macro is invoked in de�nition 14.

The trace before an overow is derived by choos-
ing the longest pre�x of tr1 for which the predicate
no error condition holds. This operation is per-
formed by the function filter of the tr library unit.
Intuitively, no error condition describes the condi-
tion under which no overow of the internal bu�er has
occurred.

hTrace before overowi[16] �

tr!filter(tr1,hRptr alphabeti[27],
no_error_condition(hRptr alphabeti[27],

chsz, buffsz))

This macro is invoked in de�nition 15.

Functions to be passed as parameters in SVerdi
are represented as a set of ordered pairs where the �rst
elements of the pairs form the domain and the second
elements form the range.11 Since no error condition
is a boolean function, we de�ne it as a set of ordered
pairs with domain equal to the set of traces of the
alphabet passed in and the range equal to the set of
Boolean values. Each trace is mapped to the value
returned when passed to the predicate no over flow.

hDe�nition of no error conditioni[17]M �

zf function no_error_condition(a, chsz, buffsz) =

begin

{ -<tr1, no_over_flow(tr1, chsz, buffsz)>-

| tr1 in a^* }

end no_error_condition;

This macro is invoked in de�nitions 219 and 221.

An overow occurs when the di�erence between
the number of even parity characters received over
inbit and the number of characters transmitted over
outbit exceeds buffsz + 1, at any point during ex-
ecution. buffsz is incremented by 1 since Rptr may

11The delimiters for ordered pairs are denoted by -< and >-.

be processing a character in addition to the buffsz

characters possibly held by the internal bu�er.12

hDe�nition of no over owi[18]M �

function no_over_flow(tr1, chsz, buffsz) =

begin

all tr2:

tr2 .<=. tr1

-> (len hSequence of even parity inbit chars over

tr2i[19])
- (len hSequence of outbit chars over tr2i[20])

<= buffsz + 1

end no_over_flow;

This macro is invoked in de�nitions 219 and 221.

hSequence of even parity inbit chars over tr2i[19]M �

hBits to charsi[122](`tr2 |= inbit')
|^ hSet of even parity charactersi[133]

This macro is invoked in de�nitions 18 and 33.

hSequence of outbit chars over tr2i[20]M �

hBits to charsi[122](`tr2 |= outbit')

This macro is invoked in de�nition 18.

Only whole characters were transmitted over

outbit

Specifying that no spurious bits were transmitted is a
simple matter of stating that the sequence of bits that
traversed outbit is a multiple of the character size,
chsz, plus 2 for the start and stop bits delimiting each
character transmitted.

hOnly whole characters were transmitted over outbiti[21]�

(len tr1 |= outbit) mod (chsz + 2) = 0

This macro is invoked in de�nition 11.

Repeater Invariant

Before Rptr terminates, we cannot guarantee that
every even parity character received has been trans-
mitted. We can guarantee, however, that the sequence
of characters transmitted over outbit must be a pre-
�x of the sequence of even parity characters received
over inbit before the overow occurred. This is easily
speci�ed in terms of the primitives already de�ned.

hA subsequence of valid characters were transmitted over out-

biti[22] �
hCharacter sequence transmitted over outbiti[12]

.<=. hValid character sequence received over inbiti[13]

This macro is invoked in de�nition 9.

.

.

.

12.<=. is the sequence pre�x predicate.

